Python Programming Examples

Comprehensive Python code examples and tutorials covering fundamentals, data science, web development, automation, and advanced programming concepts.

25+ Tutorials
5 Learning Paths
300+ Code Examples

Learning Paths

Choose your learning journey based on your goals and interests

🏗️

Python Fundamentals

Master the core concepts of Python programming from basic syntax to object-oriented programming.

  • Python Syntax & Basic Operations
  • Data Types & Data Structures
  • Control Flow & Functions
  • Object-Oriented Programming
  • Exception Handling
  • File I/O & Module System
📊

Data Science & Analytics

Learn Python for data analysis, visualization, and scientific computing with popular libraries.

  • NumPy Arrays & Mathematical Operations
  • Pandas DataFrames & Data Analysis
  • Data Visualization with Matplotlib & Seaborn
  • Jupyter Notebooks Best Practices
  • Statistical Analysis & Modeling
  • Data Cleaning & Preprocessing
🌐

Web Development

Build web applications, APIs, and handle web scraping with Python frameworks and libraries.

  • Flask Web Applications & Templates
  • Django Framework & MVT Pattern
  • REST API Development & Authentication
  • Web Scraping with BeautifulSoup & Requests
  • Security & Authentication Patterns
🤖

Automation & Scripting

Automate repetitive tasks, manage files, and create powerful automation scripts.

  • File System Operations & Management
  • Web Automation with Selenium
  • Email Automation & Notifications
  • System Administration Scripts
🚀

Advanced Python

Explore advanced topics including async programming, concurrency, and machine learning.

  • Async Programming with AsyncIO
  • Multiprocessing & Threading
  • Machine Learning with Scikit-learn
  • Testing Frameworks & Debugging

Popular Python Examples

Data Analysis

import pandas as pd
import numpy as np

# Create a sample dataset
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'Diana', 'Eve'],
    'Age': [25, 30, 35, 28, 32],
    'City': ['New York', 'London', 'Tokyo', 'Paris', 'Sydney'],
    'Salary': [70000, 80000, 90000, 75000, 85000]
}

df = pd.DataFrame(data)

# Basic operations
print("Dataset Info:")
print(df.info())

# Statistical summary
print("\nStatistical Summary:")
print(df.describe())

# Group by city and calculate average salary
city_salary = df.groupby('City')['Salary'].mean()
print(f"\nAverage salary by city:\n{city_salary}")

# Filter data
high_earners = df[df['Salary'] > 80000]
print(f"\nHigh earners:\n{high_earners}")

# Add new calculated column
df['Salary_USD_K'] = df['Salary'] / 1000
print(f"\nWith salary in thousands:\n{df}")
import numpy as np

# Create arrays
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([10, 20, 30, 40, 50])

# Array operations
print("Array 1:", arr1)
print("Array 2:", arr2)
print("Sum:", arr1 + arr2)
print("Product:", arr1 * arr2)
print("Dot product:", np.dot(arr1, arr2))

# Matrix operations
matrix_a = np.array([[1, 2], [3, 4]])
matrix_b = np.array([[5, 6], [7, 8]])

print("\nMatrix A:")
print(matrix_a)
print("Matrix B:")
print(matrix_b)
print("Matrix multiplication:")
print(np.matmul(matrix_a, matrix_b))

# Statistical operations
data = np.random.normal(100, 15, 1000)  # 1000 samples, mean=100, std=15
print(f"\nGenerated data statistics:")
print(f"Mean: {np.mean(data):.2f}")
print(f"Standard deviation: {np.std(data):.2f}")
print(f"Min: {np.min(data):.2f}")
print(f"Max: {np.max(data):.2f}")
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

# Create sample data
np.random.seed(42)
data = pd.DataFrame({
    'x': np.random.randn(100),
    'y': np.random.randn(100),
    'category': np.random.choice(['A', 'B', 'C'], 100)
})

# Set up the plotting area
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle('Python Data Visualization Examples', fontsize=16)

# 1. Scatter plot
axes[0, 0].scatter(data['x'], data['y'], c=data['category'].astype('category').cat.codes, alpha=0.6)
axes[0, 0].set_title('Scatter Plot')
axes[0, 0].set_xlabel('X values')
axes[0, 0].set_ylabel('Y values')

# 2. Histogram
axes[0, 1].hist(data['x'], bins=20, alpha=0.7, color='skyblue')
axes[0, 1].set_title('Histogram')
axes[0, 1].set_xlabel('X values')
axes[0, 1].set_ylabel('Frequency')

# 3. Box plot
data.boxplot(column='y', by='category', ax=axes[1, 0])
axes[1, 0].set_title('Box Plot by Category')

# 4. Line plot
x_line = np.linspace(0, 10, 100)
y_line = np.sin(x_line)
axes[1, 1].plot(x_line, y_line, 'b-', linewidth=2)
axes[1, 1].set_title('Sine Wave')
axes[1, 1].set_xlabel('X')
axes[1, 1].set_ylabel('sin(X)')

plt.tight_layout()
plt.show()

Web Development

from flask import Flask, jsonify, request
from datetime import datetime

app = Flask(__name__)

# Sample data
books = [
    {"id": 1, "title": "Python Cookbook", "author": "David Beazley"},
    {"id": 2, "title": "Fluent Python", "author": "Luciano Ramalho"},
    {"id": 3, "title": "Python Tricks", "author": "Dan Bader"}
]

@app.route('/')
def home():
    return jsonify({
        "message": "Welcome to Python Books API",
        "timestamp": datetime.now().isoformat(),
        "endpoints": ["/books", "/books/<id>"]
    })

@app.route('/books', methods=['GET'])
def get_books():
    return jsonify({"books": books})

@app.route('/books/<int:book_id>', methods=['GET'])
def get_book(book_id):
    book = next((book for book in books if book["id"] == book_id), None)
    if book:
        return jsonify(book)
    return jsonify({"error": "Book not found"}), 404

@app.route('/books', methods=['POST'])
def add_book():
    data = request.get_json()
    new_book = {
        "id": len(books) + 1,
        "title": data["title"],
        "author": data["author"]
    }
    books.append(new_book)
    return jsonify(new_book), 201

if __name__ == '__main__':
    app.run(debug=True)
import requests
from bs4 import BeautifulSoup
import pandas as pd
import time

def scrape_quotes():
    """Scrape quotes from quotes.toscrape.com"""
    quotes_data = []
    base_url = "http://quotes.toscrape.com/page/{}"

    for page in range(1, 4):  # Scrape first 3 pages
        url = base_url.format(page)
        response = requests.get(url)

        if response.status_code == 200:
            soup = BeautifulSoup(response.content, 'html.parser')
            quotes = soup.find_all('div', class_='quote')

            for quote in quotes:
                text = quote.find('span', class_='text').text
                author = quote.find('small', class_='author').text
                tags = [tag.text for tag in quote.find_all('a', class_='tag')]

                quotes_data.append({
                    'quote': text,
                    'author': author,
                    'tags': ', '.join(tags)
                })

        # Be respectful - add delay between requests
        time.sleep(1)

    return quotes_data

# Scrape and save data
quotes = scrape_quotes()
df = pd.DataFrame(quotes)

print(f"Scraped {len(quotes)} quotes")
print(df.head())

# Save to CSV
df.to_csv('quotes.csv', index=False)
print("Data saved to quotes.csv")
import requests
import json

# 1. Simple GET request
def get_user_info(username):
    """Get GitHub user information"""
    url = f"https://api.github.com/users/{username}"
    response = requests.get(url)

    if response.status_code == 200:
        return response.json()
    else:
        return {"error": f"User {username} not found"}

# 2. POST request with authentication
def create_gist(token, description, files):
    """Create a GitHub gist"""
    url = "https://api.github.com/gists"
    headers = {
        "Authorization": f"token {token}",
        "Accept": "application/vnd.github.v3+json"
    }

    data = {
        "description": description,
        "public": True,
        "files": files
    }

    response = requests.post(url, headers=headers, json=data)
    return response.json()

# 3. Handle different response types
def fetch_json_data(url):
    """Fetch and handle JSON data with error handling"""
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()  # Raises HTTPError for bad responses

        return {
            "success": True,
            "data": response.json(),
            "status_code": response.status_code
        }
    except requests.exceptions.Timeout:
        return {"success": False, "error": "Request timed out"}
    except requests.exceptions.HTTPError as e:
        return {"success": False, "error": f"HTTP Error: {e}"}
    except requests.exceptions.RequestException as e:
        return {"success": False, "error": f"Request failed: {e}"}

# Example usage
user_data = get_user_info("octocat")
print(json.dumps(user_data, indent=2))

Python Ecosystem

🐍

Core Python

Master the fundamentals of Python programming language, syntax, and built-in libraries.

Python 3.11+ Standard Library PEP 8
📊

Data Science

Analyze data, create visualizations, and build machine learning models with powerful libraries.

NumPy Pandas Matplotlib Scikit-learn
🌐

Web Development

Build robust web applications, APIs, and handle web interactions with modern frameworks.

Django Flask FastAPI Requests
⚙️

Automation

Automate repetitive tasks, manage systems, and create efficient workflows.

Selenium BeautifulSoup Celery Fabric
🤖

AI & Machine Learning

Build intelligent applications with machine learning and artificial intelligence frameworks.

TensorFlow PyTorch OpenAI Hugging Face
🚀

DevOps & Deployment

Deploy applications, manage infrastructure, and implement CI/CD pipelines.

Docker Kubernetes Ansible AWS SDK

Why Learn Python?

📈

High Demand

Python consistently ranks as one of the most popular and in-demand programming languages worldwide.

🔧

Versatile

Use Python for web development, data science, automation, AI, scientific computing, and more.

👥

Large Community

Benefit from extensive libraries, frameworks, and a supportive global community of developers.

Easy to Learn

Clean, readable syntax makes Python an excellent choice for beginners and experienced developers.

🏢

Industry Standard

Used by tech giants like Google, Netflix, Instagram, and countless startups and enterprises.

🚀

Rapid Development

Build prototypes quickly and scale to production with Python's rich ecosystem and frameworks.